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1 Introduction

In order to deal with the data from the experiments at LHC for the study of elementary
particles, signals and potential backgrounds for new physics have to be under control at
sufficient accuracy [1]. In particular, hard processes with high multiplicities, involving many
particles or partons, cannot be neglected. On top of that, such processes have to be dealt
with at the next-to-leading order (NLO) level to, for example, reduce the scale dependence
of observables and to have a better description of the shape of their distributions.



An important part of a NLO calculation concerns the one-loop amplitude. Recently,
impressive results have been published for one-loop QCD amplitudes for very high numbers
of partons [2-4]. They were obtained with the so-called unitarity-approach. Originally
restricted to analytical calculations [5-9], the potential of this method in a numerical
approach became, after the crucial input from [10], clear with the work of [11-13] and [14].
It is considered an alternative to the “traditional” approach involving tensor integrals. Both
approaches expand the one-loop amplitude in terms of a basis set of one-loop functions.
In the unitarity-approach, this set consists of scalar-integrals up to 4-point or 5-point
functions, and it aims at determining the coefficients directly. In the “tensor-approach”,
the basis set is larger and consists of tensor integrals or their coefficients functions when
expanded in terms of Lorentz-covariant objects [15-35]. Also these basis-functions are
eventually calculated by expressing them in terms of a smaller set of scalar-integrals, but
this happens in a, for the particular method, universal way, independent of the amplitude.

Multiplicities with up to 20 partons as achieved in [2, 3] are unattainable in the tensor-
approach because of the asymptotic computational complexity of the latter. It arises
because the basis set contains n-point functions where n goes up to the total number of
external legs of the amplitude. Let us make a crude comparison between the unitarity-
approach and the tensor-approach of [30] in which the basis set consists of “normal” tensor
integrals carrying explicit Lorentz-indices. A first step in the analysis of the computational
complexity of the two methods is the determination of the number of coefficients to be
evaluated in case ordered amplitudes have to be calculated. For the unitarity-approach
which determines coefficients up to 4-point functions, it is given by

() ()@ () w

The number of tensor integrals is, using the fact that only symmetric tensors have to be

considered of a rank not higher than the multiplicity,

ii n\ (14+3\  —384+592n + 203n? + 26n° + n’ on (1.2)
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Here, all tensors up to the maximal ranks have been included. The number is obviously
much larger than the number of scalar functions. The asymptotic behavior of 2™ for the
tensor integrals is particularly disastrous. It is a result of the expansion in terms of n-point
integrals. The accompanying n*-behavior stems from the symmetric tensor components. Of
course this is not the whole story. Also the operations to be performed in order to determine
the coefficients have to be taken into account. For the unitarity-approach as presented in [2]
for example, this leads to a final computational complexity of O(n?). In this write-up, we
will see that, by using recursion on both the tensor integrals and their coefficients, the com-
plexity as given in eq. (1.2) does not change. Although the asymptotic complexity is expo-
nential as opposed to the polynomial complexity of the unitarity-approach, it may be com-
petitive for moderate values of n, and in fact, we will see that in practice it is up to n = 10.

Besides the computational complexity, also the numerical stability is an important
issue concerning one-loop calculations. It is typically related to inverse Gram-determinants



approaching zero. When using tensor integrals, this issue is isolated to the calculation of
the tensor integrals themselves. In that sense, it allows for universal solutions, and several
methods to achieve this exist. As a last resort, the calculation of the tensor integrals can be
performed at higher precision level for phase-space points at which numerical instabilities
occur, and the decision to do so can be made at relatively low cost. In the unitarity-
approach, numerical instabilities can show up in the computation of the coefficients for
the scalar functions. At the moment, there is no better cure known than to increase the
precision level for the full calculation for phase-space points at which numerical instabilities
occur. Fortunately, also in this case the decision is relatively cheap.

A final issue worth mentioning is the potential towards automation of the method.
The unitarity-approach proofs to be successful in this respect because it optimally allows
for the use of existing tree-level machinery related to the calculation of off-shell currents
or “sub-amplitudes”. We will see that the method presented here allows for the same. In
particular, it is completely numerical and no computer algebra is involved.

The outline of the paper is as follows. In section 2 the tensor reduction is addressed,
and in section 3 tensor symmetrization, which is crucial for the efficiency of the presented
algorithm. Recursive relations for one-loop amplitudes are presented in section 4, and in
section 5 results can be found obtained with the help of an explicit implementation of the
algorithms in the foregoing sections. The conclusions in section 6 finally close the paper.

2 Tensor reduction

Tensor integrals are usually calculated using recursive equations relating high-multiplicity
and high-rank tensor integrals to lower-multiplicity and lower-rank ones. Tensor reduction
is this formal process, in practice the opposite process, tensor building, is performed. The
multiplicity n» and and rank r are defined with the formula

TrAve-v, :/ dPq g gl | 1)
L VAR

As the formula suggests, we consider tensor integrals defined in D dimensions, but only
with 4-dimensional components of the integration momentum in the numerator. This will
lead to a calculation of the one-loop amplitude within the scheme of [37], which asks for a
finite counterterm in order to arrive at gauge-invariant results and to cast the result into
other schemes like 't Hooft-Veltman or FDH. This finite counterterm is exactly given by
the so-called Ro-term, showing up explicitly in the OPP unitarity-approach as part of the
rational terms [13], and which is shown how to be determined in [38].

The asymptotic computational complexity given in eq. (1.2) does not increase when
the operations needed to calculate the tensor integrals are taken into account, because for
high-n each integral can be obtained using a fixed number of lower integrals, independent
of n or r. This can be easily understood as follows. Using the fact that we can write

2(pj —pn) - q = [(q+p;j)* —m3] = [(q+pn)* —m2] +mj —p} —m +pp, (2.2)



we have

2(p; = Py, Ty = T (G) = TSI () + (m = pf —mp +op) T

(2.3)
where ’Tnyi?r_yf ~'(j) is obtained from ’]':7}"”_2{'””1 by removing the j-th denominator. Choos-
ing 4 different vectors p; appearing in the denominators, we get 4 relations, enough to
determine the 4 integrals 7,/1"2""" with the first r — 1 Lorentz indices fixed. So 4 tensor
integrals can be determined using 12 lower integrals. Although very straightforward, this is
numerically not necessarily the best method to calculate tensor integrals, since it involves
the inversion of a 4 x 4-matrix. The method presented in [30] involves the square-root of
an inverse Gram determinant of only 3 vectors. Also these can be chosen out of n — 1
denominators, and for high n the probability that a phase-space point is such that all
combinations lead to small Gram determinants is rather low.

For low-n integrals, i.e. for n < 4, the previous statement is obviously not true, but
several recipes and their implementations to deal with numerical instabilities exist. Notice
that, in renormalizable gauges, r < n, so that for low n also the cost, for example, of con-
verting Passarino-Veltman functions calculated following [33] to tensor integrals like above
is acceptable. In fact, to obtain the results in this write-up, the “Alternative Passarino-
Veltman-like reduction” from [33] was used for the 4-point integrals. It can easily be
predicted when this method fails, in which case the method from [30] was used. For the
3-point functions, conventional Passarino-Veltman reduction was used.

The end-points of the tensor reduction are scalar integrals. Also these can recursively
be reduced further, and eventually be expressed in terms of 4-point scalar functions. For
the application in this write-up, the unitarity-approach as presented in [11] was used to
express scalar functions into 4-point functions directly. This choice, of course, is not in
correspondence with the “recursivity philosophy”, and in fact it strictly speaking increases
the asymptotic computational complexity to O(n°2").! In practice, however, it appears
to be rather numerically stable and efficient, in particular because the formulations of [30]
and [11] are compatible to large extend, avoiding the re-calculation of some overhead. Fur-
thermore, for the scalar-functions, no numerator functions have to be evaluated, and only
the coefficients for the 4-point functions have to be calculated, avoiding the computationally
more challenging issues coming with the method of [11] in general.

The scalar one-loop 1-point, 2-point, 3-point and 4-point functions, finally, were evalu-
ated with OneLOop [36]. Also the tensor 2-point functions were evaluated with this program.

3 Tensor symmetrization

Also for high-rank tensors, one has to deal with tensor-contractions in the end. Contracting
rank-r tensors with 4" tensor components seems hopeless, and the solution to this problem
is tensor symmetrization. Here, we use the fact that the tensor integrals eq. (2.1) are

'Roughly speaking O(2") scalar functions need O(n*) coefficients for the 4-point functions, each of which
involves the evaluation of O(n) denominators.



symmetric, and a tensor integral of rank r has only

<r+3> 64+ 11r +6r2 +1°
B 6

(3.1)

r

independent components. So for symmetric tensors, the issue of contraction does not look
hopeless at all. We only have to make sure we can calculate the symmetrized coefficients
to be contracted with the tensor integrals directly. By symmetrization we mean adding
tensor-components which are multiplied by the same tensor integral together, so

(1,2} 1.2 2,1 (122} 1122 | 5212 | 22,1
Tr:2 - Tr:2 + Tr:2 ’ Tr:3 - Tr:3 + Tr=3 + Tr=3
1,23 123 | 231 | 312 | ;321 |, 21,3 | 01,32
T7"{:3 b= L2357 + 12y + 125 + 12 + T2 +T,.2557, (3.2)

T;yll@...yr}

etc.. In general, a symmetric tensor of rank r with 4-dimensional indices can be

represented as

Tzt = (3.3)

no,n1,n2,n3
where n,, is the number of indices referring to dimension p. These numbers satisfy ng+mn1+

ng + ng = r. Now suppose we have a linear recursive relation between tensors of the type

Tywswe I (3.4

r—1
with TV = KY{. The solution is a product of the components of the vectors K; to K,. To
calculate the symmetrized product, we can cast the relation in the form

S _ Sr—l KS—FSr_l Kl

no,n1,n2,n3 no—1,m1,n2,n3 no,n1—1,ng,n3 “°r

+5-1 K? 451 K (3.5)

no,ni,n2—1ng no,ni,n2,n3—1 " r o

with the convention that Sy, , .. .. is identically zero whenever any of the indices is neg-
ative.

The relation expressed by eq. (3.4) seems rather trivial, but we will see that the ten-
sor components we have to calculate satisfy very similar relations. The main difference
will be that the simple multiplications on the r.h.s. will be replaced by more complicated
contractions. This does not have any influence on the possibility to calculate symmetrized
components directly, nor on the asymptotic computational complexity. In fact, like the
calculation of the tensor integrals, also the calculation of the tensor components does not
increase the asymptotic complexity given in eq. (1.2). This stems from the facts that
the number of operations to be performed to calculate a tensor given the lower tensors
is constant, and that the number of tensors entering the recursive equation is equal to
the number of tensor integrals, i.e., no intermediate “auxiliary” tensors have to be calcu-
lated. The equivalents of the vectors K} above will essentially consist of tree-level off-shell
currents, which are computed at a cost of O(n?).

4 Ordered gluon one-loop amplitudes

In the following, we wil derive recursive relations for the tensors to be contracted with
the tensor integrals in order to arrive at one-loop amplitudes. First we repeat the known
tree-level relations to introduce some notation.



4.1 Recursive relations for ordered gluon tree-level amplitudes

The recursive relations for tree-level gluon off-shell currents are given by [40]

i1 =2 -1
Aéfj -2 ZVV%(pi7k7pk‘JrlJ)Alij,k‘Angl,j + Z Z W#poAlij,kAZJrl,lAlJrLj (4.1)
Pij = k=i I=k+1
with ]
1g
Vi (p1,p2) = 7%[ (p1 = P2)"gup + (P1 + 2p2)u gy — (P2 + 2p1), 91 | (4.2)
and
n ig? n n n
Wl/po = 7[ 2gp Gvo — 9y Ypo — 95 Gpv ] . (4-3)

The starting points Aé‘ i = 67 of these recursive equations are the polarizations vectors of
the external gluons, and we denote

J
p= (a4
k=i
where pj, is the momentum of gluon k. For ¢ < j we define p; ; = 0. If py,, = 0, then

An(1,2,...,n) = guuen piA’fvn_l (4.5)

is the tree-level color-ordered amplitude for gluon 1 to n. The full tree-level amplitude for
the n gluons is then given by [39]

My =Y Te(T0OT%) .. T0) Ay (n(1),7(2),...,7(n)), (4.6)
WGSn/Zn
where a1, as, ..., a, are the color indices of the gluons and T'* are the generators of SU(N,).

The sum is over all permutations of the gluons except the cyclic permutations. The off-shell
currents satisfy g,,p; jAéL ;=0 and the three-point vertex can be reduced to

igs

Vi, (p1,p2) = \/5[ (p1 — p2)!gup + 2p20 95 — 2p1, 95 | - (4.7)

The recursive equation may be represented diagrammatically by

@é% | "

Even for a diagrammatic representation this formula is rather rudimentary, but it encodes
enough information for our purpose. For a more detailed description of the recursive rela-
tion, we prefer to refer to eq. (4.1) instead of dressing up the diagrammatic representation.



4.2 Recursive relations for ordered gluon one-loop amplitudes

A so called color decomposition as in eq. (4.6) also exists for one-loop amplitudes [41], and

is given by
MP = 3" (1% - T00) AV (1), 7(n) (4.9)
TESK/Zn
[n/2|+1

+ Z Z Tr(TM - .. T (e=1)) Ty(T( .. .Tafr(n))ASf)(ﬂ-(l)7 ..,m(n)),
c=2 7ESn/Sn;e

where Sy, is the subset of S, that leaves the corresponding double trace structure invariant.
The objects AS) are called primitive amplitudes. They only receive contributions from
diagrams with a particular ordering of the gluons. The partial amplitudes .A,(f) can be
calculated as linear combinations of permutations of the primitive amplitudes.

Given the definition of the primitive amplitudes, one can write down a recursive relation
for off-shell currents from which the primitive amplitudes can be constructed following a
relation like eq. (4.5). The blobs in the diagrammatic equation eq. (4.8) represent off-shell
currents consisting of sums of tree-level diagrams. We represent off-shell currents consisting
of diagrams containing exactly 1 loop by a blob with a hole, and we have

+@+€+é o

Concerning the first line, it is clear that, since the result may only consist of one-loop
diagrams, exactly one blob with a hole must be connected to a vertex. Since we are
considering ordered amplitudes, all distributions of the blob with a hole over the different
legs of a vertex have to be represented separately.

The actual loops are generated in the second line of eq. (4.10). Both the second and the
third term on this line have to be added explicitly because of the ordering. These loops are
constructed from tree-level off-shell currents with one auxiliary gluon with momentum and
polarization vector, say, ¢ and ¢*(i) respectively. The index ¢ runs from 1 to 4 such that

4

> (i) (i) = g . (4.11)

i=1

This gluon is supposed to be virtual, and thus off-shell. The polarization vector has no
real physical meaning, and just plays the role of the end-point of the gluonic line. We will



now introduce objects Gf‘? (¢) including this auxiliary gluon through the formal relations

d4q
~©O ~ & [ o+ p) G5
Z7j

i dq
o S S W A, =1 (412

vjkz

i d*q o
— 5= ZW#PUA /W—QGZ-FLj(q) .

pw k=1

The seemingly superfluous momentum shift p; ;1 in the first line is to make sure that
only inverse denominators of the form (q + ka)Q appear in the calculation, and not for
example (¢+pax)?. This also means that the auxiliary external gluon in G?é‘ (q) is carrying
momentum ¢ + py,;—1 instead of ¢. At this point, the question is how to assign a meaning
to the relations above, and we will explain this in the following.

Since we are interested only in the contribution of ordered one-loop diagrams, the
auxiliary gluon with momentum ¢+ p; ;—1 must be the first one? for every off-shell current
Gf"; (q), so these off-shell currents satisfy

Auq)_@é‘%—% . (4.13)

More explicitly, the relation is

A
Gzl;(‘J) = Z ‘J+P1 kapkH,J)G w(q )A/I;Jrl]
Q+P1,j h—i1
+ Z Z W#pO'G DAY 1A | - (4.14)
k=i—11=k-+1

Notice that the sum over k starts with £ = ¢ — 1: the case that Gf‘%(q) does not contain
any of the gluons 7 to j and for which it is given by

G _i(q) = g™ (4.15)
for every i. Introducing the symbol
igs
Xf;z/p \/5[ go’.gl/p + gp Guo — 2959;)0 ] (4.16)

20r the last one, but we choose the first one.



we can separate the ¢-dependent part of the 3-point vertex and write

. j—1
A —1 Av
Gy(a) = —3 > Vil o1k pri1y) + Xb,d7] G AT
(q + Pl,j) b—i1
j—2 -1
AV
+ Z Z W#paGi,k(q)Aerl,l 7+1,j}- (4.17)
k=i—11=k+1

From these recursive equations, we can see that Gf‘? (¢) can be expressed as follows

2 |D‘71 )\ qulqllg . ql/,r
Gi@a= "> 3 Gl (D) IPRTETE (4.18)
DC{i—1,,....j} r=0 jep\q T PL;j
where |D| is the number of elements in D, which is a subset of the set {i — 1,4,...,j}

containing at least ¢ —1 and j. The tensors Qﬁl’ﬁ@...yr (D) do not depend on ¢. As an explicit
example, we can write

iy~ G4+ G (1L 4) ¢
2,4(Q) = 2 2
(g +p1,1)* (¢ +p1a)
LGM(1L2,4) + G (1.2,4) ¢ + Gl (1,2.4) ¢ ¢
(¢ +p1,1)%(q+p12)%(q + p1,4)?
LGM(13.4) + G (1.3,4) ¢ + Gl (1,3.4) ¢ ¢
(g+p1,1)%(q+p1,3)%(q + p1,a)?
gAN(L 27 37 4) + gbu(la 27 37 4) qy + gli\luvz(la 27 37 4) qyl qVQ
(q+p11)%(q + p12)*(q +p1,3)%(q + p1,4)?
5\5/21/3(1, 27 37 4) qy1 qVQqVS
(@+p11)% g+ p12)%(q+p13)2(q+p1a)?

(4.19)

With this observation, we can assign a meaning to the relations of eq. (4.12) as follows.
Given the tensor integrals

qu qZI qZQ L. qu

P72 TTepl(a + i) 4 10]

T (py — / (4.20)

for which the numerator only contains 4-dimensional components of ¢, we define the object

D1

Gr= 3 Y @, (DT (D) (4.21)

DC{Z*l,Z,,]} =0

which does not depend on ¢, and assign

g1 et
—1 = —1 =
_ i vp Ao _ iz v po
=Y WE,GRAT =Y Wh ANGI . (4.22)
Pij = Pij =



This will lead to a calculation of the one-loop amplitude within the scheme of [37]. We
cannot use the tensors Gy, ..., (D) directly to define the first line of eq. (4.12), and we will
discuss this below.
First, however, we need to answer the question how to calculate the tensors
2 (D). Obviously, from eq. (4.17) we can derive recursive equations for them. Writing
D ={D',k,j}, so the largest two elements of D are {k,j}, we find

A by .
Gl (D) = GJhy o (D' K, )
-1
D
= _lguluug---ur(pl’k) VV!;)(p17k’pk+1,j)AZ+1,j+ Z W#pUAZ—f—Ll ?—f—l,j
I=k+1

Gy, ., (D k)XE, A7

vrvp k+17j 9 (423)

where the third line is absent for the case » = 0, and the second line is absent for the case
r = |D| — 1. As the starting points of the relations we define

G (i) = —igh, G(i) =0, (4.24)

for any i =0,...,n.

Let us address the discussion about the computational complexity in section 3 and
compare eq. (4.23) with eq. (3.4). The first difference is that eq. (4.23) has tensors of
rank r also on the r.h.s.. Secondly, eq. (4.23) involves the contraction with index v instead
of a simple multiplication. These differences do not influence the asymptotic computa-
tional complexity. Finally, all objects calculated using the recursive relation are needed in
eq. (4.21), and no auxiliary tensors show up whose calculation could influence the asymp-
totic computational complexity.

In order to deal with the first line of eq. (4.12), we introduce the objects

HY'(q) = V(=g = pri-1,9 +p1;)G () - (4.25)
With the help of the symbol

ig
Yauup = 7%[ _295911/) + gl;gua + gﬁgpa ] (4'26)

we can separate the ¢-dependent part of the 3-point vertex again and write

Hﬁj(Q) = [Vu!;)(—pl,z‘fl,pu) + Y;‘l,pq"] ng(q) , (4.27)
and express
|D‘ qlllqug .. qu
Hyp= > > M (D) Ton@ )2 (4.28)
Dc{i—1,i,....j} r=0 jep\d T P1,j
with
Hﬁly?nyr (D) - VV%(_pl’ifl’plvj)gzlpVQ“'Vr (D) + Yul:l/pglzpm---ur71(p) : (429)

,10,



The second term on the r.h.s. is absent for the case r = 0 and the first one is absent for

the case r = |D|. Now we simply assign

D]

=D =l= Y Y M OTD) (@430

DC{Z 1727 j}r 0

We can now write down the diagrammatic relation eq. (4.10) explicitly. Denoting a

one-loop off-shell current by B!’ o we have

. 7j—1
i ,
B%u;] - pT{ Z V#p(l”i,kaPk—i—l,j) [Bi,k A k+1,j + A +1 ji|
k=i

j—2 j—1

+Z Z Vpo[ A Al T AL By Al + Ak ALy Bl
k=i l= kJrl

AL+ Z Ww{ GVl AT,y + AY, GZ”HJ]}. (4.31)

So the program to calculate these one-loop off-shell currents is to
1. calculate the tree-level off-shell currents A’ ; with recursive equation eq. (4.1);
2. calculate the tensor integrals 77127 (D) defined in eq. (4.20);

3. calculate the tensors Got, ..., (D) using eq. (4.23) and the tensors Hy,,,....,. (D) using
eq. (4.29);

4. calculate the objects I:IZ“] following eq. (4.30) and C_ll.pg following eq. (4.21);
5. solve eq. (4.31) recursively.

The one-loop amplitude finally is given by
AL = = guu el poBY el - (4.32)

4.3 Including ghost and quark loops

In order to arrive at gauge-invariant amplitudes, ghost contributions have to be included.
Also, one could want to include quark loops. Then, eq. (4.10) has to be extended to

o8Pl
+@+%+é+2—f§i - (4.33)

— 11 —




The factor 2 for the ghost loop is needed to arrive at gauge-invariant ordered amplitudes.
The calculation of the ghost-tensors is rather trivial once the calculation of the gluonic
ones are understood. We prefer to focus the attention on the quark loops. The main
difference is that for these, the g-dependence of the numerators in the off-shell currents
with an auxiliary quark comes from the quark propagators instead of the vertices. The
off-shell currents, or “off-shell spinors”, with an auxiliary quark satisfy

B () = (@(_@* ’ (4.34)

where z,y denote the spinor-indices. More explicitly, the relation can be written as

Uy LU () AV 4.35
Y(q) = q+p17]2k;1 (q+ 1) U5 (q) Af (4.35)

where implicit summation also over spinor-indices is understood. Here, we introduced

the matrix .
L
NCE

The g-dependent part on the r.h.s. can be isolated even more straightforwardly than in

T, = (4.36)

the gluon case. We write

|D|-1
) qquy2...qV7"
U= 3. > Uh 20 | I p—r (4.37)
Dc{i—1,,....j} =0 jep\d T P1,j

and find that
UL,y (D) =USY, ., (D' k) = UZY, ., (D) (T, Pl AR

vive - vr ViV Vr Vv Ur k+1,5
+1u51,12i2 Vp— I(D/’k)( l/rp) Az+1] . (438)

The contribution from the quark loops to the integrands of the one-loop gluon off-shell
currents, without the the factor —1/N;, are given by

Fl'5(q) = (g +pri-1)” (Tu)y U (q) - (4.39)

Remember that Uf J’-y(q) already contains the denominator of the propagator factor on the
r.h.s.. Now we write
D e

q'q”--q
F*(q) = 4.40
ORI DRD DL e P (4.40)

DC{Z 177/7 7]} r= 0

with
Fhivgn (D) =1 i1 (T )y U, (D) + (0o, M)y o Uit (D' E) (4.41)

The integrated contributions from the quark loops to the one-loop gluon off-shell currents
are then given by
D

lpw@ S F e, (D) TV (D) | (4.42)
DC{Z 1717 7]}T =0
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4.4 The Ro-term

Finally, to obtain gauge-invariant results, the Ro-term [13, 38] has to be included. The
necessary extra vertices are given by

2

Pl(p) = %5(1/2 + Anv + Ne/Ne)p?glt (4.43)
)
Vi (p1,p2) = g; (7/4+ Anv + 2N /Ne)[ (p1 — p2)" gup + 2p2v 9y — 2p1, g1 | (4.44)
_ 54
Wiy = =216 +201y +5Nt/No)gh gus — (5/2 + Mty +3Ne/No)(98 9o +5 90
(4.45)

where N is then number of quarks, and Ay = 1 in the 't Hooft-Veltman scheme and
Ay = 0 in the FDH scheme. The off-shell currents R’ ; containing graphs with exactly 1
such vertex satisfy the recursive equation

. 7j—1
Rﬁj 2 { Z Voo (Disks Pht1,5) [Rz k Ak+1 T Ay R£+17j
Zh]

-
p o
E Vpa{ ik k+1,l 1+ Alk Rk+ll 1, AT A B

i l=k+1
+ P p” Z 2o (Dite Pt 1,5) Al i AZ+1,j
Jj=2 j—1
DIPLIHOFINTINS (a6)
k=i l=k+1

The Ro-term is then given by

Ro = gupen R, 1 - (4.47)

5 Results

The presented algorithm has been implemented in a Fortran77 program which, first of all,
reproduces all the numeric results given in [2] for multi-gluon amplitudes up to 10 gluons
to at least 4 decimals precision (appendix A). Results involving one massless quark-loop
are presented in appendix B.

Secondly an analysis of the accuracy like in [2] and [3] has been performed, which makes
use of the existence of a simple formula for the divergent part of color-ordered one-loop
gluon amplitudes within dimensional regularization [42]. It is given in [2] as

(poles) __ (47T)€ F(l + E)FQ(l — 6 _n pl Z+1 _ E (tree)
A © 1672 (1 —2¢) Zl 3 A (51)

where € = (4—D)/2 and D is the dimension, u is the dimensional scale. Since the divergent

part of the one-loop amplitude should also be obtained by using the divergent parts of the

,13,
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Figure 1. The distribution of the quantity in eq. (5.2) (left) and eq. (5.4) (right) for calculations
at the double precision level. The lower graphs represent the same distributions as the upper ones,
but with a logarithmic scale for the y-axis.

initial scalar functions as the starting points in the calculation of the tensor integrals, there
is the opportunity to compare the two and assess the accuracy of the latter. The left of
figure 1 gives the distribution of the quantity

A9 (5.1) — AL

10 log
A9 (5.1)

(5.2)

where ./41(11/6)(5.1) refers to the coefficient of 1/e in eq. (5.1), and A9 refers to this
coefficient calculated with the program presented in this write-up. The distribution is
obtained from a large sample of uniformly distributed phase-space points with the same
kinematical cuts as in [2, 3] being

<3, pLi>001Vs,  y/léi— g2+ I —nyl2 > 04, (5.3)

where n; is the rapidity of gluon ¢, p, ; its transverse momentum and 7; its azimuthal
angle, all with respect to the axis of the incoming gluons. Also helicity configurations
where sampled uniformly distributed, only avoiding configurations for which the tree-level
amplitude vanishes. The distributions for a total number of 6, 8 and 10 gluons are shown
for calculations at the double precision level. We see a behavior compatible with [2] at
the double precision level, and slightly better than [3] at double precision level. The lower
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Figure 2. The right tail of the distributions for n = 10 of figure 1 (evaluated at double precision
level), and the distributions for the same phase space points when the tensor integrals are evaluated
at quadruple precision, and when everything is evaluated at quadruple precision.

graph at the left of figure 1 shows the same distributions in a log scale for the y-axis in
order to highlight the right tail.

Obviously, for a small part of the phase space points the accuracy becomes unaccept-
ably bad. Results of re-evaluation for these at higher precision are given on the left of
figure 2. Presented are the right tail of the distribution for n = 10 starting from —4, and
distributions obtained with the same set of phase space points for different options of ap-
plying quadruple precision arithmetic. Evaluating the tensor integrals only (but including
the scalar functions) at quadruple precision, the tail is shifted to the left to a large extend,
but still phase space points may show up leading to an unacceptably bad accuracy. The
more expensive option of evaluating everything at the quadruple precision level, however,
moves the whole tail below —16.

Another hint at the accuracy of the program can be given by the extend at which gauge
invariance is satisfied. A one-loop amplitude should vanish whenever the polarization vector
of any of the external gluons is replaced by the momentum of that gluon. The quantity

070g ( ) (5.4)

may serve as a measure of the number of decimals being eliminated by performing such a

Im AS) (52‘ — pi)
Im AS)

Re AS})(aZ— — pi)
Re A1(q,1)

replacement in a numerical calculation, which then again may give an estimate of the ac-
curacy. The right of figure 1 presents the distribution of (the finite part of) this quantity,
obtained from the same sample of phase-space points as before, now however including
helicity configurations for which the tree-level amplitude vanishes. The distributions are
compatible with the ones on the left. The lower graph at the rights show the same distri-
butions again in a log scale for the y-axis. The right tails behave similarly to the ones left,
and the same holds for the distributions in figure 2.

In table 1 the typical cpu-times t}40p, are given needed for 1 evaluation of the one-loop
amplitude for a number of gluons from 4 to 10 on a 2.80GHz Intel Xeon processor. They
are determined by taking the average over the evaluations for a large number of different
phase-space points. The numbers are roughly comparable with those in [2, 3], but do
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n 4 5 6 7 8 9 10

t1o0p (105) 2.762 | 10.15 | 34.37 | 109.8 | 335.1 | 965.2 | 2744
toop(118)/(n*27) | 0.6744 | 0.5077 | 0.4144 | 0.3573 | 0.3196 | 0.2873 | 0.2680
toop/tiree/103 | 0.2990 | 0.6102 | 1.180 | 2.244 | 4.104 | 7.919 | 15.17

Table 1. Typical cpu-times needed for 1 evaluation of the one-loop amplitude on a 2.80GHz Intel
Xeon processor.

show a worse behavior as function of the number of external particles. The numbers for
tloop/ (n42") seem to converge, supporting the statements in section 3 about the computa-
tional complexity being O(n*2"). The numbers for tloop/ttree, Where tiree is the cpu-time
needed for 1 evaluation of the tree-level amplitude, give a machine-independent measure of
the computational cost. Notice that they increase as 2", consistent with the computational
complexities of O(n*2") for the one-loop amplitude, and O(n?) for the tree-level amplitude.

6 Conclusion

An algorithm was presented to calculate multi-gluon one-loop amplitudes using tensor
integrals, which was shown to be competitive with existing programs using the unitarity-
approach up to a number of 10 gluons. It uses universal recursive relations for tensor
integrals, independent of the amplitude being calculated. It also uses recursive relations for
ordered gluon amplitudes, however in this respect it can straightforwardly be generalized to
any field theory by extending known recursive relations at tree-level [43—45] to the one-loop

level, as was done for the ordered gluon amplitudes in this write-up.
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A Reproduction of existing results

This appendix contains the reproduction of the explicit numeric results in [2] up to a
number of 10 gluons. The phase-space points at which the amplitudes were evaluated can
be found in [2]. Presented is the absolute value of the coefficients of €72, ¢! and €” of the
amplitudes. Results labelled with “tree” give the latter value for the tree-level amplitude.
The upper-left box in each table gives the helicity configuration. The results from [2] are
labelled with “[2]”.

Al n=6
+4+++++ 2 ! e
tree 0.2215923815877299E-14
tree [2] 0.1767767365814634E-14
unit [2] 0.0000000000000000E+00 | 0.0000000000000000E+00 | 0.5298064836438550E+00
num [2] 0.1060660419488780E-13 | 0.3813284749527035E-13 | 0.5298064836612950E+00
tnsr 0.1349521124077591E-10 | 0.7792283713971911E-10 | 0.5298064837199270E+00
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A.2

—+++++

€0

tree
tree [2]
unit [2]
num [2]

tnsr

0.1011255761241711E-10
0.2377895374324842E-12
0.6401972138850929E-10

0.6753625348984687E-09
0.8549005883762705E-12
0.1571282783053386E-08

0.1947124136075826E-13
0.3963158957208070E-13
0.3259967043518990E+01
0.3259967054272360E4-01
0.3259967053973336 E+01

——++++

€0

tree
tree [2]
unit [2]
num [2]

tnsr

0.1709476899026590E+03
0.1709476899026590E4-03
0.1709476899026128 E+03

0.6145908783763959E+03
0.6145908783763970E4-03
0.6145908783750691 E+03

0.2849128165044324E4-02
0.2849128165044320E4-02
0.1373747535008540E+04
0.1373747535008280E4-04
0.1373747535007119E+04

—+-+—+

€0

tree
tree [2]
unit [2]
num [2]

tnsr

0.1883229237004670E+02
0.1883229237004850E4-02
0.1883229236988423E+02

0.6770582934748300E+02
0.6770582928695769E4-02
0.6770582928667301 E-+02

0.3138715395008085E4-01
0.3138715395008080E4-01
0.1510439503289600E+03
0.1510439503379470E4-03
0.1510439503340157E+03

+—+-—+-

€0

tree
tree [2]
unit [2]
num [2]

tnsr

0.1883229237005540E+02
0.1883229237004850E4-02

0.1883229236987900E4-02

0.6770582928570479E+02
0.6770582928695769E4-02
0.6770582928717265E4-02

0.3138715395008091E+01
0.3138715395008080E4-01
0.1537801015298360E+03
0.1537801014159860E+03
0.1537801016156306E+-03

n=717

+++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.6861582055762283E-11

0.0000000000000000E-+00
0.0000000000000000E+4-00

0.1256534542409480E-09
0.1250170111559883E-14
0.3862018590575813E-10

0.2703922191931054E-14
0.0000000000000000E+4-00
0.3101695329720260E-+00
0.3101695334831830E4-00
0.3101695335777539E4-00

—t+F++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.3678212874319657E-12
0.2713533399763100E-14
0.4384180396142481E-10

0.7209572152581734E-12
0.8924875144594874E-14
0.2104965953958677E-09

0.1648597081617964E-14

0.0000000000000000E+4-00
0.1920528148108100E+00
0.1920528147653950E+00
0.1920528150979991E4-00

——+++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.1474628984216140E+02
0.1474628984216140E-+02
0.1474628984215924E4-02

0.4850089396312140E+02
0.4850089396312130E+02
0.4850089396308871E4-02

0.2106612834594487E+01
0.2106612834594490E4-01
0.8731521551387900E+02
0.8731521551386510E+02
0.8731521551379141E4-02

—+—+—+-

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.7713059766610930E+00
0.7713059766610950E+00

0.7713059766434806 E400

0.2536843489960730E+01
0.2536843489960750E+01

0.2536843489868709E4-01

0.1101865680944418E+00
0.1101865680944420E4-00
0.5933610502945470E+01

0.5933610502629016E4-01
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F—F+-—+-—+

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.7713059766610930E+00
0.7713059766610950E+4-00
0.7713059766436269E-+00

0.2536843489960740E+01
0.2536843489960750E4-01
0.2536843489862686E+01

0.1101865680944424E4-00
0.1101865680944420E+00
0.6042012409916140E+01

0.6042012409615074E+01

A3 n=38

FH++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.0000000000000000E-+00
0.3853462894343397E-14
0.1336896918161384E-10

0.0000000000000000E-+00
0.1441159379540454E-13
0.5652403097216611E-10

0.2961844168510185E-15
0.0000000000000000E4-00
0.1967006006956910E+00
0.1967006007382010E4-00
0.1967006012222209E+00

—+++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.0000000000000000E+00
0.1805821909003967E-13
0.2640076774290492E-10

0.1965638104048654E-09
0.6753606439965886E-13
0.1008615996797149E-09

0.2951926495253574E-14
0.2257277386254959E-14
0.5287747164930630E+00
0.5287747176521700E+00
0.5287747173953582E4-00

— =+ttt

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.3466551355735610E4-02
0.3466551355735680E+02
0.3466551355735630E4-02

0.1296458053471450E4-03
0.1296458052914090E+03
0.1296458052913800E4-03

0.4333189194669586 E+01
0.4333189194669600E+01
0.2742997734349260E4-03
0.2742997734349000E+03
0.2742997734347139E4-03

—+—+-+—+

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.5809218091107730E4-00
0.5809218091108460E4-00
0.5809218091244186E-+00

0.2172593680235970E4-01
0.2172593682447690E4-01
0.2172593682447645E+01

0.7261522613885360E-01
0.7261522613885579E-01
0.5476303819766790E4-01

0.5476303819972849E+01

+—F—F—+-

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.5809218091108620E-+00
0.5809218091108460E4-00
0.5809218091153071E+00

0.2172593687810420E+01
0.2172593682447690E4-01
0.2172593682480466E+01

0.7261522613885418E-01
0.7261522613885579E-01
0.4925500546307290E+01

0.4925500546470287E+01

A4 n=9

+H++H++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.4860269836292316E-11
0.2693624076029116E-12
0.1242803468718531E-06

0.1845193695700690E-07
0.1176695244346755E-11
0.1395624387049265E-05

0.3090869336705567E-13
0.2992915640032351E-13
0.5666555617062950E+01
0.5666555580473110E4-01
0.5666561857344509E4-01

—++F+++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.3938371378126140E-10
0.8202679137223861E-12
0.1761715389271764E-05

0.2340429860576292E-07
0.3583296428617654E-11
0.2085999886200371E-04

0.7191085595712448E-13
0.9114087930248735E-13
0.1062086460614280E+01
0.1062086467981750E+01
0.1062166559796595E4-01
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——+++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.2909067010969220E+03
0.2909067011509570E4-03
0.2909066975088621 E+03

0.1270810334861320E+04
0.1270810336301850E4-04
0.1270810392170893E+04

0.3232296679455183E4-02
0.3232296679455080E+02
0.3625430616705210E-+04
0.3625430616705940E+4-04
0.3625430209440870E+04

—+—t+—+—+-

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.4081697696661860E+01
0.4081697697311550E4-01
0.4081697504765963E+01

0.1783067767208140E+02
0.1783067768078440E4-02
0.1783065940829036 E+02

0.4535219663678330E4-00
0.4535219663679500E4-00
0.5710639504628740E+02

0.5710625504238800E+02

f—+—+—+-+

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.4081697696620550E+01
0.4081697697311550E4-01
0.4081697558409711E+01

0.1783067764548420E+02
0.1783067768078440E4-02
0.1783066268732069E+02

0.4535219663678577TEA400
0.4535219663679500E+4-00
0.5501538077075760E+02

0.5501537931596933E+02

A5 n=10

F+++++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.2616999209810146E-12
0.7645214091184737E-12
0.1199729722684045E-06

0.7453142378465002E-06
0.3853184186191476E-11
0.1810959673219180E-05

0.8422572777655544E-13
0.7645214091184737E-13
0.1843490112846700E+02
0.1843490112846710E4-02
0.1843487909054984E4-02

—+++++++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.1729567134060808E-10
0.3138928592085274E-11
0.9039805077823879E-06

0.3462486730362966E-05
0.1582018484813023E-10
0.8416576413616293E-05

0.1538190662118770E-12
0.3138928592085274E-12
0.1411806902836740E+02
0.1411806902836920E4-02
0.1411799961139769E4-02

——+F++F++++

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.4899726956656070E-+04
0.4899726956663410E-+04
0.4899726958888808 E+-04

0.2469460004000990E+05
0.2469460004768270E+05
0.2469460005194075E4-05

0.4899726956663458 E+03
0.4899726956663410E4-03
0.7584491014580890E+05
0.7584491014578140E+05
0.7584491017379209E4-05

—+—F—+-—+—+

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.9346113719987591E+02
0.9346113720089021 E+02
0.9346113676127024E4-02

0.4710436787027110E+03
0.4710436772479390E+03
0.4710436797756468E4-03

0.9346113720088734E+01
0.9346113720089020E4-01
0.1481274476056640E+04

0.1481274475543962E4-04

-+ —+—+—+-

€0

tree
tree [2]
unit [2]
anly [2]

tnsr

0.9346113719956180E-+02
0.9346113720089021 E+02
0.9346113696575948 E+4-02

0.4710436740057420E+03
0.4710436772479390E+03
0.4710436794794809E4-03

0.9346113720088464E+01
0.9346113720089020E4-01
0.1503970258031110E+04

0.1503970260993868E4-04
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B Quark loops

This appendix contains results with one massless quark-loop exclusively without the gluon-
inc loops, and the full one-loop amplitude including one massless quark-loop. The former
are labelled with “excl”, and the latter with “incl”. The phase-space points are the same
as in appendix A, and are given in [2]. Presented is the absolute value of the coefficients
of €72, ¢! and €° of the amplitudes. Results labelled with “tree” give the latter value for
the tree-level amplitude. The upper-left box in each table gives the helicity configuration.

Bl n=6
++++++ e? e ! 0
tree 0.2215923815877299E-14
excl 0.3444649545719067E-11 | 0.3563314196395845E-11 | 0.1766021612412397E+00
incl 0.5484082406081639E-11 | 0.5497590035137738E-10 | 0.3532043223779056E+00
—+ 4+ 4+ e e ! e’
tree 0.1947124136075826E-13
excl 0.3588818407048125E-10 | 0.2958732120038221E-09 | 0.1086655684552452E-+01
incl 0.8158777253122160E-10 | 0.1238241794955264E-08 | 0.2173311369421295E-+01
- —++++ e’ ! ¥
tree 0.2849128165044324E+02
excl 0.3083625492388671E-10 | 0.6331395922312280E+01 | 0.2228503047232156E+02
incl 0.1709476899026306E+03 | 0.6094559286552980E+03 | 0.1363324204445743E404
-+ -+ e e ! e°
tree 0.3138715395008085E+01
excl 0.8282931375686374E-10 | 0.6974923101314857E+00 | 0.3642128932022815E+01
incl 0.1883229236997337E+02 | 0.6714014235334223E+02 | 0.1496072786704808E403
-+t 2 1 0
tree 0.3138715395008091E+01
excl 0.1130982098649374E-10 | 0.6974923098246018E+00 | 0.1399955550457513E+01
incl 0.1883229236989885E+02 | 0.6714014235419050E+02 | 0.1526894583161683E403
B2 n="7
+++++++ e? et €0
tree 0.2703922191931054E-14
excl 0.2734354818049004E-12 | 0.1535659632517864E-11 | 0.1033898444969325E-+00
incl 0.5758778544760509E-12 | 0.3391282384997409E-11 | 0.2067796889938174E+00
—++++++ e? ! ¥
tree 0.1648597081617964E-14
excl 0.7829286354785003E-11 | 0.4038378546519624E-10 | 0.6401760500069484E-01
incl 0.1149200607547395E-10 | 0.6152252106547420E-10 | 0.1280352099351288E-+00
——+++++ e ? ! ¢’
tree 0.2106612834594487E+01
excl 0.3039208000395293E-12 | 0.4681361854653245E+00 | 0.7724537168857577E+00
incl 0.1474628984215543E+02 | 0.4815969760605956E+02 | 0.8723793738684391E+02
R 2 ! 0
tree 0.1101865680944418E+00
excl 0.4415997997437337E-11 | 0.2448590404383259E-01 | 0.8801500600694001E-01
incl 0.7713059766680262E+00 | 0.2518997184786409E+01 | 0.5849371002103936E+01

,20,




€0

0.2448590401493046E-01
0.2518997184763565E+01

0.1101865680944424E4-00
0.9578987033471566E-01
0.5952686996619508 E+01

€0

0.2946477554703654E-10
0.2689757765745469E-10

0.2961844168510185E-15
0.6556686705957517E-01
0.1311337340887097E+00

€0

0.4138014710832325E-10
0.2282288551418147E-10

0.2951926495253574E-14
0.1762582391337885E+00
0.3525164784441872E4-00

€0

0.9629309321605227E4-00
0.1288994364902356 E+03

0.4333189194669586 E+01
0.1952623627599051E4-01
0.2738716469885952E+03

€0

0.1613671694024866E-01
0.2160086095767551E4-01

0.7261522613885360E-01
0.7432198837943639E-01
0.5416218143354230E4-01

€0

0.1613671696641898E-01

0.2160086095780097E+01

0.7261522613885418E-01
0.3887448345810546E-01
0.4897808762927628 E+01

0

0.4256557696335983E-06
0.1169508469550796E-05

0.3090869336705567E-13
0.1888851178320152E+01
0.3777703015967018E4-01

€0

0.7142546418827421E-05
0.1415224198572896E-04

0.7191085595712448E-13
0.3540723883196215E4-00
0.7080938879221086 E+00

0

0.7182873316896260E+01
0.1264862610175780E4-04

0.3232296679455183E+02
0.8760538757567446E+01
0.3621189040116724E+4-04

€0

0.1007747715318806E4-00
0.1774721263709833E+02

0.4535219663678330E4-00
0.3472201563087314E4-00
0.5675986177672981E+02

€0

i e’
tree
excl 0.4278136193897277E-11
incl 0.7713059766681208E+400
B3 n=38
++++++++ e 2
tree
excl 0.6535721923323608E-12
incl 0.6936524320241993E-11
—+++++++ e’
tree
excl 0.2993517822283384E-11
incl 0.1682824582337319E-10
——++++++ 2
tree
excl 0.2048884758899206E-11
incl 0.3466551355734642E402
-—+-+-+—+ e?
tree
excl 0.6007828400852260E-11
incl 0.5809218091173581E+00
+—+—+—F-= 2
tree
excl 0.2176051463652288E-11
incl 0.5809218091128370E+00
B4 n=9
+++++++++ e?
tree
excl 0.1679041191381272E-07
incl 0.9845976672993657E-07
—++++++++ €2
tree
excl 0.7127945940983221E-06
incl 0.1124121726807117E-05
——4+++++++ e 2
tree
excl 0.3697111686288034E-05
incl 0.2909066988869654E+-03
—t = -+ -+ - €2
tree
excl 0.2296878137953301E-06
incl 0.4081697557451384E+401
+—+—+—+—+ €2
tree
excl 0.2530328589867088E-06
incl 0.4081697604003098E+01

0.1007792647137644E+00

0.1774721648717686E4-02

0.4535219663678577E+00
0.3151037218153409E-+00

0.5470112910999667E+-02
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=2

e—1

€0

B.5 n=10
++++++++++

tree

excl

incl

0.7742516776772886E-07
0.1833646911715754E-06

0.8116698643478135E-06
0.2136772265813164E-05

0.8422572777655544E-13
0.6144957172059176 E+01
0.1228991105613530E4-02

—+++++++++

=2

e—1

0

tree
excl
incl

0.5628204459080735E-06
0.1437262034778626E-05

0.3925867464691803E-05
0.8702188415939938E-05

0.1538190662118770E-12
0.4705985971256853E4-01
0.9412025021303032E4-01

——F+++++++

6_2

E_l

€0

tree
excl
incl

0.1254733694226626E-05
0.4899726955335932E+04

0.1088828222285149E4-03
0.2460028096277122E+05

0.4899726956663458 E4-03
0.2631225655494603E4-03
0.7571494684904416E+05

—+-+-+—-+—+

=2

e—1

€0

tree
excl
incl

0.4577998694131886E-06
0.9346113693450476E+4-02

0.2076909542983419E+01
0.4692445627736100E4-03

0.9346113720088734E4-01
0.7503126329349836E+01
0.1474914895661399E4-04

-+ —F—+-—+-

€2

e 1

€0

tree
excl

incl

0.4345102202108285E-06
0.9346113705011550E+02

0.2076912724815172E4-01
0.4692445616703819E+03

0.9346113720088464E+01
0.6824080572856147E4-01
0.1498766884054935E+04
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